Forces that Act on Bridges

By on November 11, 2005 -- Modified on October 4, 2016

Bridges must be able to withstand several types of forces. The two most common to model bridges are compression and tension, pushing and pulling respectively. The other two are torsion (twisting) and shear. Learn what these forces mean so that you can build a better model bridge.

Compression:

Compression is a pushing (compressing) force. The shorter a piece of wood is, the more compression it can hold. The longer a piece of wood is, the less compression it can hold. When you compress a long stick of wood you will notice that it starts to bend. When a piece of wood breaks because of compression, we say it failed from buckling. Typically the top chord of a bridge, including model bridges, will be in compression. Different truss designs spread out the force so that various internal parts will be in compression as well.

Compression

Compression

Tension:

Tension is a pulling force. Wood has the ability to resist a lot of tension. It would be hard to break a popsicle stick if you held both ends and pulled apart. Tension may be applied parallel to the grain of the wood, but should be avoided perpendicular to the grain. Wood is very strong in tension parallel to the grain, but much weaker in tension perpendicular to the grain. Also, unlike in compression, the ability of wood to resist tension does not change with its length. A shorter piece of wood should hold the same amount of tension as a longer piece.

Tension

Tension

Torsion:

Torsion is a twisting force. When you wring out a cloth, you are applying torsion to the cloth. If you take a stick pretzel, twist one end, and hold the other end still, it will break very easily. If you do that with a baseball bat, it will not break. However, if you take a piece of licorice and apply torsion to it, the licorice will twist around several times before it breaks. Each of these materials has a different way of responding to torsion. Bridge designers must watch for torsion and try to reduce it as much as possible.

Torsion

Torsion

Shear:

Shear is an interesting force. It happens when there are two opposing forces acting on the same point. If you hold a piece of wood with both hands next to each other, and push up with one hand and down with the other, you are applying shear to that piece of wood. Shear usually occurs horizontally, and not vertically.

Leave any questions in the comments below.

Related Posts

Post Information

64 thoughts on “Forces that Act on Bridges”

1 2 3
  1. What force is caused by wind?

    By garret -- December 1, 2018
1 2 3

Leave a Reply to aj Cancel reply

Your email address will not be published. Required fields are marked *


*


36 queries in 0.455 seconds.